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The purpose of this paper is to compare the performance of Two-Step Robust 
Weighted Least Squares (TSRWLS) using three different Robust’s Weight 
Function namely Huber, Bisquare and Hampel. Previously, the procedure of 
TSRWLS only used Huber’s weight function as the second weight and this 
study serves to compare the performance of TSRWLS when the three 
different weight functions are used. The performance was evaluated based 
on real data and Monte-Carlo simulation study and the findings suggests that 
the performance of TSRWLS by using Huber, Bisquare and Hampel as the 
second weight is relatively close to one another with a fairly close standard 
error and almost identical values of biasness and root mean square error. 
Based on the result in the numerical example and simulation study, this 
study concluded that the performances of TSRWLS using all three weight 
functions performed equally. It is therefore suggested that any one of the 
three robust’s weight function can be used as the second weight in 
performing TSRWLS. However, the use of Huber’s weight function as the 
second weight in TSRWLS is recommended because of the simplicity of the 
function when compared against the other two weight functions. 
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1. Introduction 

*In regression analysis, the assumptions and 
outliers must be considered in order to ensure that 
the result or estimated regression model is correct. 
Violated assumptions and presence of outliers will 
lead to the estimated regression model to be 
imprecise. One of the violated assumptions that are 
commonly faced by the researcher in conducting 
linear regression analysis is heteroscedastics error. 
The heteroscedastic error and outlier are two 
problems that will affect the performance of 
Ordinary Least Square (OLS) in estimating the 
regression linear model. As an alternative, the Two-
Step Robust Weighted Least Squares (TSRWLS) 
method was proposed to remedy this problem. It has 
been proved that this method is not affected by 
heteroscedastic error and outlier simultaneously 
(Habshah et al., 2013). Previously, however, the 
procedure of TSRWLS only used Huber’s weight 
function as the second weight to perform this 
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method. In robust statistics, there are three robust’s 
weight functions that are widely used such as Huber, 
Bisquare and Hampel (Bellio and Ventura, 2005). 
Therefore, this study was performed to investigate 
the performance of TSRWLS using three different 
robust’s weight functions (Huber, Bisquare and 
Hampel). The performance will be evaluated based 
on the error measures such as the standard error, 
biasness and the root mean square error.  

The heteroscedasticity refers to the situation 
when the variance of the error terms is not constant. 
It has been proved that when the homoscedasticity 
assumption is violated, the OLS is no longer at its 
optimum. The OLS estimator remains unbiased, but 
becomes inefficient, leading to the estimates of the 
standard errors to be inconsistent. The statistical 
hypothesis tests such as the t-test, F-test, and Wald-
test are then rendered invalid (Schmidheiny, 2012). 
Therefore, the weighted least square (WLS) based on 
the variance function was proposed as an alternative 
(Kutner et al., 2008). By using this method, the 
estimated parameters in linear regression model will 
be unbiased and efficient (Sosa-Escudero, 2009). 
However, due to the presence of both 
heteroscedasticity and outliers in the data, the WLS 
is no longer appropriate because the WLS estimators 
are affected by the outlier (Habshah et al., 2009). 
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An outlier refers to a value that is extremely large 
or small compared to the other observations. 
Outliers can create great difficulty and in least 
square method for example, a fitted line may be 
pulled disproportionately toward an outlying 
observation because the sum of the squared 
deviations is minimized (Kutner et al., 2008). This 
could cause a misleading regression model. 
Therefore, Robust Weighted Least Square (RWLS) 
was put forward to remedy the effect of outliers and 
heteroscedastic errors simultaneously (Habshah et 
al., 2009). However, RWLS method can only be used 
for single linear regression. 

Because of the limitation, another method which 
is called as the Two-Step Robust Weighted Least 
Squares (TSRWLS) was proposed (Habshah et al., 
2013). This method can be used to estimate the 
multiple linear regression models. Besides, TSRWLS 
is not affected by heteroscedasticity and outliers 
compared to OLS and WLS methods.  

2. Methodology 

The procedure of the Two-Step Robust Weighted 
Least Square (TSRWLS) is initiated by computing the 
regression function based on LTS estimator and 
obtaining the fitted values. The next step is obtaining 
the residual 𝑒𝑖 = 𝑦𝑖 − 𝑦̂ and regressing the absolute 
residual on the fitted values. From the standard 
deviation function, the fitted values of 𝑆𝑖  is obtained. 
The estimated first weighted (w1) is then acquired 
through the inverse of squared standard deviation 
function as in Eq. 1. 

 

𝑤𝑖 =
1

𝑆2̂
                                                                                              (1) 

 
The second weight (w2) from the robust’s weight 

function can now be attained. The three robust’s 
weight functions which are Huber, Bisquare and 
Hampel can be referred to in Table 1. The final 
weighted W is now computed as in Eq. 2. 

 
𝑊 = 𝑤1𝑤2                                                                                       (2) 

 
Next, the estimate parameters are computed as 

depicted in Eq. 3. 
 

𝛽̂ = (𝑋′𝑊𝑋)−1𝑋′𝑊𝑌                                                        (3) 

 
To evaluate the performance of TSRWLS with 

three different robust’s weight functions, the 
analysis section has been divided into two parts 
which are the numerical example and the simulation 
study. The performance will also be tested in three 
different conditions of data, which include 
heteroscedastic error, heteroscedastic error with a 
single outlier and heteroscedastic error with several 
outliers.  

In the numerical example, the data is taken from 
Chatterjee and Price (1977). The dataset have 50 
observations where education expenditure is the 
response variable with three independent variables 

comprising of income, resident under 18 and 
resident in urban area. The performance of this 
method will be evaluated based on the value of 
standard error.  

 
Table 1: Robust’s weight function 

Robust’s Weighted Function 

Huber 𝑤2 = {

1              𝑖𝑓     |𝑒𝑖| < 1.345
1.345

|𝑒𝑖|
     𝑖𝑓       |𝑒𝑖| ≥ 1.345

 

Bisquare 𝑤2 = {
(1 − (

𝑒𝑖
4.685

)
2

)
2

    𝑖𝑓    |𝑒𝑖| ≤ 4.685

0                             𝑖𝑓        |𝑒𝑖| > 4

 

Hampel 𝑤2 =

{
  
 

  
 

1                                   𝑖𝑓   |𝑒𝑖| < 𝑎
𝑎

|𝑒𝑖|
                           𝑖𝑓     𝑎 ≤ |𝑒𝑖| < 𝑏

𝑎 (
𝑐/|𝑒𝑖 − 1|

𝑐 − 1
)        𝑖𝑓   𝑎 ≤ |𝑒𝑖| < 𝑐

0                              𝑖𝑓 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

In the simulation part, the Monte-Carlo 
simulation will be performed. The regression model 
from Chatterjee and Price (1977) will be adopted in 
Eq. 4; 
 
𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜎𝑖𝜀𝑖 ,   𝑖 = 1,2,3,… , 𝑛                   (4) 
 

where, 𝜀𝑖~𝑁(0,1), 𝑥1~𝑈(0,1) and 𝑥2~𝑁(0,1). 
To generate a heteroscedastic regression model, 

the regression parameter of 𝛽0 = 𝛽1 = 𝛽2 = 1 and 
𝜎𝑖
2 = 𝜎2 𝑒𝑥𝑝(𝑎𝑥1𝑖 + 𝑎𝑥2𝑖) with 𝜎2 = 1 and 𝑎 is an 

arbitrary constant will be used.  
In this simulation study, 𝑎 = 0.4 will be 

employed. To generate a certain percentage of the 
outlier, 𝜀𝑖~𝑁(0,1) + 𝐶𝑎𝑢𝑐ℎ𝑦(0,10) will be included.  

The percentage of outlier may vary. Based on this 
regression model, data in two sample sizes will be 
generated. 30 and 100 observations respectively for 
1000 trials will be obtained to get the summary 
statistics such as bias, the mean square error and the 
root mean square error in order to evaluate the 
overall performance. The summary statistics is 
summarized in Table 2. 

This simulation study will be carried out using R-
programming language. 

3. Results and discussion 

The performance of TSRWLS using three 
different robust’s weight functions will be discussed 
based on the numerical example and simulation 
study. 

3.1. Numerical example 

The data taken from Chatterjee and Price (1977) 
has a heteroscedastic error with a single outlier. The 
heteroscedastic error was examined by using the 
residual plot, while the outlier was identified by 
using LTS method. In this part, the performance of 
TSRWLS using three different robust’s weight 
functions was examined in two different conditions 
of data which contain heteroscedastic error and 
heteroscedastic error with a single outlier. 
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Table 2: Summary statistics 
Summary Statistics 

Bias 
𝑏𝑖𝑎𝑠(𝛽̂𝑗) = 𝛽̅𝑗 − 𝛽𝑗 , 

where, 𝛽̅𝑗 =
1

𝑚
∑ 𝛽𝑗

(𝑘)𝑚
𝑘=1  

Mean Square Error 𝑀𝑆𝐸(𝛽̂𝑗) = (𝛽̂𝑗 − 𝛽𝑗)
2
+
1

𝑚
∑(𝛽𝑗

(𝑘) − 𝛽̅𝑗)
2

𝑚

𝑘=1

 

Root Mean Square Error [𝑀𝑆𝐸(𝛽̂𝑗)]
1/2

 

 

3.1.1. Heteroscedastic error 

To test the performance of TSRWLS using three 
different robust’s weight functions in 
heteroscedastic error conditions, one observation 
which is observation 49 from the data was excluded. 
This is due to the observation being detected as an 
outlier by using the LTS method. 

Table 3 shows the estimated coefficients and 
standard error for data with heteroscedastic error. 
Based on the result, the performance of TSRWLS 
using three different robust’s weight functions are 
not too different since the values of the respective 
standard errors are fairly close to one another. The 
estimated coefficient values for 𝛽1, 𝛽2 and 𝛽3 were 
also close to one another for each robust weight 
function.  

 
Table 3: Estimated coefficients and standard error values 

for data with heteroscedastic error 

Coefficient 
Robust weight 

Function 

Statistical Analysis 
Estimated 

Value 
Standard 

Error 

𝛽0 
Huber -201.30 56.68 

Bisquare -199.20 26.53 
Hampel -198.90 32.37 

𝛽1 
Huber 0.0417 0.0057 

Bisquare 0.0413 0.0032 
Hampel 0.0414 0.0037 

𝛽2 
Huber 0.7421 0.1584 

Bisquare 0.7580 0.0775 
Hampel 0.7592 0.0935 

𝛽3 
Huber 0.0596 0.0269 

Bisquare 0.0509 0.0218 
Hampel 0.0487 0.0233 

3.1.2. Heteroscedastic error with single outlier 

In this section, the performance of TSRWLS using 
three robust’s weight functions when the data has 
heteroscedastic error with a single outlier was 
examined. The result in Table 4 suggested that the 
performance of TSRWLS using three robust’s weight 
functions performed equally since the estimated 
coefficient and standard error are relatively close. 
The Monte-Carlo simulation study was then 
performed to support this finding. 

3.2. Simulation study 

The Monte-Carlo simulation was employed to 
illustrate the performance of TSRWLS using three 
different robust’s weight functions. The performance 
was measured by using the biasness measure and 
the root mean square error. The performance was 
also examined with two different sample sizes which 
are 30 and 100 observations respectively. 

Table 4: Estimated coefficient and standard error values 
for data with heteroscedastic error and outlier 

Coefficient 
Robust weight 

Function 

Statistical Analysis 
Estimated 

Value 
Standard 

Error 

𝛽0 
Huber -214.30 57.74 

Bisquare -199.20 26.53 
Hampel -198.90 32.37 

𝛽1 
Huber 0.0428 0.0058 

Bisquare 0.0413 0.0032 
Hampel 0.0414 0.0037 

𝛽2 
Huber 0.7749 0.1616 

Bisquare 0.7580 0.0775 
Hampel 0.7592 0.0935 

𝛽3 
Huber 0.0552 0.0275 

Bisquare 0.0509 0.0218 
Hampel 0.0487 0.0233 

 

Based on Table 5, the estimated coefficients for 
all robust’s weight functions are fairly close to the 
actual value which is equal to one. These estimated 
values are consistent even when the percentage of 
outlier went up to 40% in the data. This result 
suggests that the performance of TSRWLS using 
three robust’s weight functions are relatively close to 
one another.  

 

Table 5: Estimated coefficients of tsrwls with three 
robust’s weight functions 

Sample size n =30 

Outliers Robust weight Function 
Coefficients 

𝛽0 𝛽1 𝛽2 

0% 
Huber 1.0167 0.9626 0.9955 

Bisquare 1.0208 0.9553 0.9925 
Hampel 1.0145 0.9642 0.9947 

10% 
Huber 0.9877 0.9801 1.0583 

Bisquare 0.9755 1.0270 1.0141 
Hampel 0.9749 1.0257 1.0106 

20% 
Huber 1.0124 0.9051 1.0953 

Bisquare 1.0744 0.8360 1.0878 
Hampel 1.0719 0.8423 1.0891 

30% 
Huber 1.1178 0.7172 1.0757 

Bisquare 1.1239 0.7099 1.0910 
Hampel 1.1282 0.7108 1.0951 

 Huber 1.1613 0.6145 1.0243 
40% Bisquare 1.0319 0.8570 1.0759 

 Hampel 1.0291 0.8598 1.0806 
Sample Size n = 100 

0% 
Huber 1.0001 1.0015 0.9955 

Bisquare 1.0029 0.9978 0.9983 
Hampel 1.0029 0.9975 0.9961 

10% 
Huber 0.9958 1.0406 0.9877 

Bisquare 0.9984 1.0421 1.0052 
Hampel 1.0003 1.0361 1.006 

20% 
Huber 1.0100 1.0145 1.0043 

Bisquare 1.0017 1.0433 1.0183 
Hampel 0.9971 1.0472 1.0181 

30% 
Huber 1.0256 1.0276 1.0429 

Bisquare 1.0088 1.0781 1.0537 
Hampel 1.0098 1.0772 1.0560 

 Huber 1.0482 1.0142 1.0328 
40% Bisquare 1.0540 1.0689 1.0695 

 Hampel 1.0556 1.0636 1.0731 
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The result in Table 6 and Table 7 shows the value 
of biasness measure and the root mean square error 
in two different sample sizes. Based on the result, the 
values of bias and the root mean square error are not 
too different between robust’s weight functions 
which are Huber, Bisquare and Hampel for both 
sample sizes. This indicates that the performance of 
TSRWLS with three robust’s weight functions 
performed equally. 

4. Conclusion 

In the numerical example, the performance of 
TSRWLS using three different robust’s weight 
functions are fairly close to one another since the 
value of the standard error for each estimated 
coefficient are not too different. This result has also 
been supported by the Monte-Carlo simulation 
study. In the simulation study, the values of the 
estimated coefficients by using Huber, Bisquare and 
Hampel as the second weight are fairly close to the 
actual value which is equal to one. The value of 
biasness measure and the root mean square error 
were also relatively close to one another. 

 

Table 6: Biasness measure of parameters for three 
Robust’s Weight Functions 

Sample size n =30 

Outliers 
Robust weight 

Function 
Bias 

𝛽0 𝛽1 𝛽2 

0% 
Huber 0.0167 -0.0374 -0.0045 

Bisquare 0.0208 -0.0447 -0.0075 
Hampel 0.0144 -0.0359 -0.0053 

10% 
Huber -0.0123 -0.0199 0.0583 

Bisquare -0.0245 0.0270 0.0141 
Hampel -0.0251 0.0257 0.0106 

20% 
Huber 0.0124 -0.0949 0.0953 

Bisquare 0.0744 -0.1640 0.0878 
Hampel 0.0072 -0.1577 0.0089 

30% 
Huber 0.1178 -0.2828 0.0757 

Bisquare 0.1239 -0.2901 0.0910 
Hampel 0.1282 -0.2892 0.0951 

 Huber 0.1613 -0.3855 0.0243 
40% Bisquare 0.0319 -0.1430 0.0759 

 Hampel 0.0291 -0.1402 0.0806 
Sample Size n = 100 

0% 
Huber 0.0009 0.0015 -0.0045 

Bisquare 0.0029 -0.0022 -0.0017 
Hampel 0.0029 -0.0025 -0.0039 

10% 
Huber -0.0042 0.0406 -0.0123 

Bisquare -0.0016 0.0421 0.0053 
Hampel 0.0004 0.0360 0.0057 

20% 
Huber 0.0100 0.0145 0.0043 

Bisquare 0.0017 0.0433 0.0182 
Hampel -0.0029 0.0472 0.0181 

30% 
Huber 0.0256 0.0276 0.0429 

Bisquare 0.0088 0.0781 0.0537 
Hampel 0.0098 0.0772 0.0559 

 Huber 0.0482 0.0142 0.0328 
40% Bisquare 0.0540 0.0689 0.0695 

 Hampel 0.0556 0.0636 0.0731 
 

As a conclusion, the performance of TSRWLS 
using three different robust’s weight functions which 
are Huber, Bisquare and Hampel performed equally 
since the value of the error measures (the standard 
error, biasness and the root mean square error) in 
the numerical example and the simulation study are 
relatively close to one another. Therefore, it 

suggested that any robust’s weight function, either 
Huber, Hampel or Bisquare can be used as the 
second weight in the procedure of TSRWLS. 
However, the use of Huber’s weight function as the 
second weight in the procedure of TSRWLS is 
recommended because the function is simpler than 
other two weight functions. 

 
Table 7: Root mean square error of parameters for three 

robust’s weight function 
Sample size n =30 

Outliers Robust weight Function 
Root Mean Square Error 
𝛽0 𝛽1 𝛽2 

0% 
Huber 0.5076 0.9236 0.3154 

Bisquare 0.5326 0.9707 0.3354 
Hampel 0.4955 0.9114 0.3195 

10% 
Huber 1.8400 3.2484 1.2119 

Bisquare 1.7362 3.0400 0.8958 
Hampel 1.7660 3.0399 0.8789 

20% 
Huber 2.0957 3.7629 2.0328 

Bisquare 2.1108 3.8216 1.2389 
Hampel 2.0797 3.7678 1.2223 

30% 
Huber 4.3270 7.6278 3.4126 

Bisquare 3.0468 5.5151 1.7432 
Hampel 3.0378 5.5052 1.7476 

 Huber 4.9040 8.3541 3.1220 
40% Bisquare 3.9348 7.1874 2.2944 

 Hampel 3.9451 7.2005 2.3020 
Sample Size n = 100 

0% 
Huber 0.2510 0.4670 0.1482 

Bisquare 0.2560 0.4739 0.1558 
Hampel 0.2343 0.4381 0.1384 

10% 
Huber 0.6320 1.1179 0.3759 

Bisquare 0.6167 1.1217 0.3512 
Hampel 0.5620 1.0223 0.3252 

20% 
Huber 0.8935 1.6118 0.4966 

Bisquare 1.0581 1.9058 0.5940 
Hampel 1.0128 1.8321 0.5673 

30% 
Huber 1.3140 2.4105 0.7167 

Bisquare 1.4873 2.6618 0.8636 
Hampel 1.4779 2.6441 0.8568 

 Huber 1.8826 3.2483 1.3698 
40% Bisquare 1.9337 3.4283 1.3170 

 Hampel 1.9306 3.4250 1.1650 
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